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Abstract

An efficient moment method technique, based on
spatial interpolation of the moment matrix, is developed for
the analysis of microst rip circuit elements of arbitrary
shape. Redundant calculations in the moment matrix are
eliminated by utilizing various symmetries. The quasi-
dynamic approximations of the Green’s functions and
closed–form analytical approximations of the Sommerfeld
integrals are invoked to simplify the analysis. Sample
computed results are presented on the current distribution
obtained by interpolation of the moment matrix and agree
very well with those evaluated without interpolation.

I. INTRODUCTION

Microstrip elements occur in monolithic microwave
and millimeter-wave integrated circuits (MMICS) to
facilitate various circuit objectives. Computational
methods based on full–wave analysis are generally used to
solve accurately the current distribution or the fields
associated with the circuit, thereby characterizing in terms
of S–paramet ers and equivalent circuits, the parasitic
effects, such as radiation, surface wave coupling, metal-
lization and dielectric losses. These methods include the
method of moments (MoM), the finite element method, the
finite difference – time domain (FD–TD) method, and the
transmission line matrix (TLM) method. For dense cir-
cuits, full-wave methods, in spite of their versatility to
handle various geometries and material parameters, have
the disadvantage of formidable memory requirements and
CPU time. Therefore, it is desirable to investigate means
of improving the efficiency of full–wave methods so that a
circuit of moderate complexity and size can be analyzed in
reasonable time. This paper describes an efficient MoM
technique for the analysis of planar microstrip elements of
arbitrary shape, based on reducing the computation time
by spatial interpolation of the impedance matrix elements,
and by utilizing various symmetries in the problem formu-
lation. Efficiency is further enhanced by utilizing
quasi-dynamic Green’s functions [1], and the recently
developed closed-form microstrip Green’s functions [2], [3].

The interpolation method and the efficient matrix–fill
scheme are illustrated with reference to computation Of the
current distribution on a rectangular micro strip patch
deposited on thin as well as thick substrates. The current
distribution obtained by interpolation compares very well
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with that without interpolation. The proposed method has
been applied to calculate the S-parameters of meander lines
and spiral inductors, and agrees reasonably well with mea-
surements [4].

IL FORMULATIC~N

A. Moment Method

The boundary value problem for the current distribu-
tion on the surface of the conductor is formulated as a
Mixed (scalar and vector) Potential Integral Equation
(MPIE) [1]. The microstrip surface is segmented into
rectangular cells, and rooftop basis functions and the razor
testing procedure are employed to compute the current dis-
tribution in each cell. A coaxial probe with its center
conductor embedded in the dielectric substrate is used as
excitation for the currents [1], From the current distribu-
tion, the multiport impedance matrix and the scattering
(S) parameters of the discontinuity are computed. Applica-
tion of the MoM to the MPIE results in a matrix equation
in which the elements of the matrix consist of scalar and
vector potential integrals defined over the support of a
pulse function and a rooftop basis function, respectively.
The reader is referred to [4] for expressions of the impe-
dance mat rix elements and the excitation vector for a coax
probe.

B. Efficiency Considerations

B. 1. Efficient Matrix Fill

The redundancies present in the moment matrix for
equal size cells, chosen here for convenience, can be taken
advantage of m reducing the matrix fill-time. A careful
examination of the matrix elements reveals (upto) a
sixteen-fold redundancy for the scalar potential contribu-
tions, manifested by the overlapping of the rooftop basis
functions [4] ! Therefore, a significant reduction in the
matrix fill time can be achieved by computing each scalar
potential integral and placing it in the appropriate matrix
element M it is calcl+ated. Similar considerations apply to
the vector potential mt egrrds.

The Green’s functions depend on the distance R = Ip
— # I between source and observation points. Depending
on the trace geometry being examined, there may be only a
few distinct source+bserver distances. For example? on a

rectangular patch divided into mxn charge cells (Fig. 1),
there are only mn such dist antes, or equivalently, mn dis-
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tinct scalar potential integrals, (m–l)n distinct integrals for
the x-directed vector potential, and (n–l)m distinct inte-
grals for the y~irected vector potential. Filling the

moment matrix without utilizing any symmetry involves
the computation of (2mn – m - n)z potential ‘Integrals, in
contrast to the (3mn – m - n) integrals required in our
efficient fill-in scheme. Therefore, we could precomput e
and store these (3mn – m – n) distinct potentials in a
t wo-chrnensional array (called the storage matrix), and
ret rieve them I at er to fill the entire moment matrix.
Considerable time and memory savings can be accom-
plished in this manner. In order to compute these distinct
potentials, we ma place the source on any cell (say, cell

f(1,1) — see Fig. 1 , move the observation point through all
the cells, and compute the potential integrals. The

computational efficiency is further enhanced b~ interpola-
ting the Green’s functions [I].

The efficient matrix fill scheme described above for a
rectangular pat ch may be used even if the circuit boundary
does not conform to a rectangle. For example, consider the
spiral inductor geometry shown in Fig. 2. The hatched
cells (except cell (1,1)) correspond to the conductor (or
met al). Unhatched cells are non–met alli c. Using symme-
tries within the rectangular boundary, we could place the
source current of 1 A on cell (1,1) and compute all the
distinct source – observer interactions, including those
pertaining to non–metallic cells. From these interactions,
we could select only those which represent metallic cell
interactions. A considerable time savings can be obtained
in spite of the extra calculations involving non-metallic
cells. If the inductor geometry is changed keeping the cell
size unaltered, there is no necessity to comput(! any more
interactions, since all the interactions are already available
from the primary rectangle.

In Fig. 3, we compare the CPU time required for an
efficient fill of the moment matrix using the method dis-
cussed above, with the time involved in filling the complete
matrix without the utilization of any symmetry. The
structure investigated is a square patch of side 75 mm
deposited on 100 pm thick GaAs substrate. For large
mat rix orders, the CPU time for the complete matrix fill
(or CMF) is at least one order of magnitude higher than
the time required for the efficient matrix fill (or IEMF). As
an example, to fill a 500 x 500 matrix, the CMF requires
2000 (s) whereas the EMF takes about 100 (s), For com-
parison, the time involved in inverting the moment matrix
by standard LU decomposition is also plotted as a function
of matrix order. The time required for CMF is higher than
the inversion time by one to two orders of magnitude. By
extrapolation to large matrix orders, this dominance of the
CMF time is expected to continue until the order becomes
5000 or so. However, the EMF requires times much less
than the inversion times, especially for large mat rix orders.
The EMF time can be reduced even further by interpola-
ting the matrix elements as a function of the distance
bet ween the source and observation celk, as we show next.

B.2. Interpolated Efficient Matrix Ftll (IEMF)

The IEMF method involves computation of only
those potential integrals in the storage matrix which
correspond to source and observation cells in close
proximity. These are the dominant terms in the matrix.
The remainder of the matrix elements are spatially inter-
polated from these sampled values of the potential integrals
by using cubic splines. This improvement would enhance
the efficiency of the EMF technique considerably, since

only a few terms of the matrix are computed directly, and
the remainder, i.e., a significant majority of the matrix, is
computed by closed–form interpolation. Next, we shall
illustrate with an example the improvements possible with
the IEMF method.

Consider the rectangular patch shown in Fig. 1,
divided into mxn cells, each of dimensions Ax= L/m and
Ay=W/n. To fill the storage matrix for the scalar poten-
tial using the IEMF operation, the source of unit charge is
placed in cell (1,1) and the interactions of the source cell
with all the cells, including the self~ontribution, are
computed. These interactions, given by (see Fig. la)

Vij = Jyljxl Gv(pij; p’) dx’ dy’ ,

Yo Xo

i = 1,2,...,m; j = 1,2,...,n (1)

are parametrized with respect to the distance

Rij = lpij-p~ll = j (xi-x~)2 + (Yj-Y~)2 (2)

between the centers of the source and observation cells for
interpolation purposes. Instead of calculating all the mn
interactions, as done in EMF, the IEMF operation samples
only those integrals corresponding to the source in cell (1,1)
and the observation point cent ered in cells (i,l), i=l,2~. ..m,
i.e., along the first row, in cells (k,k), k=2,3,...n, i.e., along
the main diagonal, and at a few other observation points
whose number depends on the polar angle, O(O < @ < 7r/4),
of the radius vector between the source and observation
points (see Fig. la). For the example in Fig. la, a total of
m + n + 3 samplea of the scalar potential integrals would
be calculated in the IEMF method,

An approach similar to that used for the scalar poten-
tial also applies to the vector potential integrals. For
example, for the x-directed vector potential, the inter-
action bet ween the basis function 0 Il(x’ ,y’ ) spanning the
first two cells (Fig. lb) and observation points along a test
path centered at (xP, yj – Ay/2) needs to be considered.
This interaction, given by

dx’dy ’dx, p = 1,2,...,1,1, j = 1,2,...,n (3)

is parametrized, for interpolation, in terms of the “mean”
distance (see Fig. lb)

D ) (4)= ~ (dxl + dx2 + dx3
‘pj

where

H _Ax 1
z

d=
‘1 ‘P ~ –xl

+ (Yj - Y~)2 (5a)

d= J(XP--X1)2+(yj-y1)2 (5b)
‘2

J[ 2
d = Xp+p –xl

‘3 1+(Yj - Y~)2 (5C)
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With reference to Fig. lb, a total of 2(m + n + 3) samples
of the x– and y-directed vector potential integrals would be
calculated to fill the storage matrices of the vector poten-’
tial by the IEMF method.

In Table I, we compare the number o~ calculations of
the potential integrals in the EMF and IEMf? methods as a
function of the order N of the moment matrix. It is
observed that significant savings (e.g., 90% at N = 1000) in
the number of calculations can be accomplished by using
the IEMF method.

IV. CONCLUSIONS

An efficient full-wave moment method, involving
spatial interpolation ,of the moment matrix, has been devel-
oped for the analysis of microstrip circuit elements of

‘arbitrary shape. Several techniques have been used to
increase the efficiency of the algorithm, including the
utilization of (a) the closed-form microstrip Green’s
functions, and (b various symmetries in the problem for-

)mulation, which acilit ate an efficient fill-in of the moment

Table 1. Comparison of the number of potential integral calculations in the EMF and IEMF methods.

o

1,012

4,900

1,600 65

1,024,144 1,541

24,010,000 I 7,400

HI. RESULTS

We now present sample results on the accuracy of the
current distribution obtained by using the IEMF method.
Fig. 4 shows, as a function of frequency, the average
percentage error in the current distribution, defined as

N Ii EMF _ I

% error = ~
X[ ‘

1

i,IEMF Xloo
I.

(6)

1=1
l,EMF

where N = (m-l)n + m(n–l), forthereal and imaginary
currents on a square patch of side 7.5 mm, deposited on a
GaAs substrate of thickness h = 100 P and dielectric
constant cr = 12.85. The patch is divided into 10x1O
square cells, and is excited by a coax probe centered in cell
(1,1). Thepatch is resonant at afrequencyof 5.23 GHz,
where a large error (15% for the real and 50 70 for the
imaginary currents) occurs. However, at frequencies off
resonance, the error in both real and imaginary currents is
reduced to less than 0.1%. Ordy the first resonance is
shown in Fig. 4, but the pattern of large errors in the
currents recurs at subsequent resonant frequencies.

Fig. 4 shows the average error in the current for a
thin substrate. In Fig. 5, redisplay thepercentage error in
the currents computed by using the IMEF method for a
square patch of side 80 mm on a glass epoxy substrate
(6, = 4.7, h = 64 roils) – a relatively thick substrate. The
cell division and the coax probe location are the same as
those for Fig.4. The first resonance ofthis structure occurs
at 864.87 MHz. This structure shows the same pattern as
the previous case, where the error is large close to reson-
ance and less than 0.170 off resonance.

The IEMF method has been applied to the calcula-
tionof S-parameters oftypical microstrip transmission line
discontinuities and passive circuit elements, including
meander lines and spiral inductors. Good agreement has
been observed between our computed results and those
obtained from commercial software packages as well as
experiments on a vector network analyzer [4].

using IEMF (N1)

:-

35 54
—

144 9.5

306 I 4 II

matrix. Using interpolation to fill the moment matrix has
proven to be very efficient and produces negligible error in
the current distribution for off-resonant frequencies. This
method is not valid for resonant structures where the accur-
acyofevery matrix element becomes crucial.

The IEMF method can be applied to fill the moment
matrix for any arbitrary planar circuit geometry, which can
be contained within a rectangle, and which can be repre
sented accurately by rectangular cell division. This method
allows the geometry to be changed without having to recal-
culate the scalar and vector potential integrals, and is
therefore, much more efficient than defining a unique
geometry for every structure.

[1]

[2]

[3]

[4]
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Fig. 1 (a) The match point locations for scalar
potential integrals computed in IEMF. (b) The
test path locations for vector potential
integrals. The source is placed in the hatched
cells.
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Fig. 2 Utilization of matrix symmetries (EMF

method) for a spiral inductor.
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Fig. 4 Error in the real and imaginary currents
computed by IEMF for a thin substrate.
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Fig. 5 Error in the real and imaginary currents
computed by IEMF for a thick substrate.


